Journal of Chromatography, 157 (1978) 445-448 © Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROM. 11,106

Note

New solvent mixtures for thin-layer chromatography of aflatoxin M₂

U. W. GASIOROWSKA and E. L. STRZELECKI*

Veterinary Hygiene Research Station, 10 Kaprow St., 80-316 Gdańsk (Poland) First received August 31st, 1977; revised manuscript received April 17th, 1978)

The identification of aflatoxin M_1 is generally accomplished by thin-layer chromatography (TLC) with detection under UV light. Separation of aflatoxin M_1 from interfering substances on chromatoplates depends on the solvent mixture used for development. The following solvent mixtures are most often used: (1) chloroform*n*-propanol³; (2) chloroform-acetone-*n*-propanol³; (3) chloroform-acetone-*n*-amyl alcohol⁴; (4) chloroform-acetone-isopropanol¹; and (5) chloroform-acetone⁵. In milk and milk products, the separation of aflatoxin M_1 from interfering substances using these solvents is not satisfactory. Some blue interferring spots have the same R_F as aflatoxin M_1 . Therefore it was decided to construct a new solvent mixture to improve the detection of aflatoxin M_1 .

EXPERIMENTAL

The milk extract was prepared from 42 samples of powdered milk according to methods described previously^{1,5–8}. All of the extracts were collected in one vial and kept as the stock solution.

Radial chromatography⁹ (as shown in Fig. 1) was used to select an appropriate developing solvent. The following six spots were applied on chromatoplates (for each solvent) by use of 20 μ l of liquid for each spot: two spots of aflatoxin M₁ standard; two spots of milk extract; and two spots of milk extract containing the internal standard. To one spot of each pair was applied 1 ml of one of 20 different solvents (Table I). The other spots were left as controls. These experiments showed which solvents were the best developers of the investigated substances, as well as for the separation of interfering substances from aflatoxin M₁. On this basis 20 different solvent mixtures were used for the separation of aflatoxin M₁ on chromatoplates coated with silica gel GHR. The five most promising mixtures are shown in Table II and Fig. 2.

RESULTS AND DISCUSSION

The results are presented in Table I and Fig. 1. Among the 20 different solvents,

^{*} Correspondence should be addressed to: Prof. Dr. Edward L. Strzelecki, University of Dar es Salaam, Veterinary Science Division, P.O. Box 643, Morogoro, Tanzania.

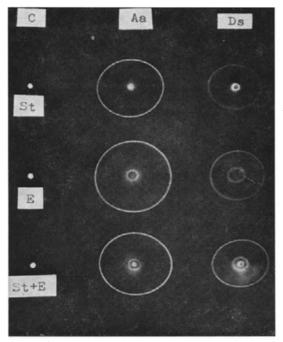


Fig. 1. Selection of solvent for the resolution of aflatoxin M_1 from milk extract. St = aflatoxin M_1 internal standard; E = milk extract; St + E = milk extract with aflatoxin M_1 internal standard; C = control (three undeveloped spots of milk extract, aflatoxin M_1 and milk extract plus aflatoxin M_1 ; Aa = acetic acid (three developed spots of milk extract, aflatoxin M_1 and milk extract plus aflatoxin M_1); Ds = developing solvent No. 2 in Table II (three developed spots of milk extracts, aflatoxin M_1 and milk extracts, aflatoxin M_1); Ds = developing solvent No. 2 in Table II (three developed spots of milk extracts, aflatoxin M_1 and milk extracts, aflatoxin M_1).

TABLE I

SELECTION OF SOLVENTS FOR THE SEPARATION OF MILK EXTRACTS FROM THE AFLATOXIN M_1 STANDARD

No.	Solvent	Dielectric constant*	Milk extract	Aflatoxin M ₁ standard
I	n-Hexane	1.9	_	_
2	<i>n</i> -Heptane	1.9		
3	Light petroleum (b.p. 60–80°)	2.0	_	_
4 5	Carbon tetrachloride	2.2	_	· _
5	Dioxan	2.2		_
6	Benzene	2.3	_	
7	Toluene	2.4	_	_
8	Diethyl ether	4.3	++	+
9	Chloroform	4.8	+	+
10	Ethyl acetate	6.0	+++	++
[1	Acetic acid	6.1	++	<u> </u>
12	Pyridine	12.3	++	++
13	n-Amyl alcohol	13.9	+	+
4	Isopropanol	18.3	+	+
15	n-Propanol	20.1	++	++
16	Acetone	20.7	++	+++
17	Ethanol	24.3	++	+++
18	Methanol	32.6	+++	+++
19	Acetonitrile	37.0	++	+++
20	Water	78.5	+	+

- = Immobile (start line); + = weakly mobile; + + = intermediate mobile; + + + = strongly mobile (front line).

* Data from ref. 9.

TABLE II

DEVELOPING SOLVENTS FOR TLC OF MILK EXTRACTS AND AFLATOXIN B_1 AND M_1 STANDARDS

Solvent	Proportion	Resolution of aflatoxins B_1 and M_1	Separation of aflatoxins from fluorescent substances	
			$\overline{B_1}$	M ₁
<i>n</i> -Hexane Light petroleum	10 10			
Benzene	10			
Chloroform	40	+	+	·
Acetone	10			
	10			
Acetic acid	10			
n-Hexane	10			
	-			
		+	÷	+ 、
		+	+-	+
-	-			
		+	-	+
				•
	-			
-	-			
		+	÷	+
				•
	Light petroleum Benzene Chloroform Acetone Acetonitrile Acetic acid	Light petroleum10Benzene10Chloroform40Acetone10Acetonitrile10Acetonitrile10Acetonitrile10Acetic acid10n-Hexane10Light petroleum10Benzene10Chloroform20Acetone10Acetone10Acetonitrile10Acetone10Acetone10n-Propanol5n-Hexane10Light petroleum10Benzene10Chloroform55Acetone10n-Propanol5n-Hexane10Light petroleum10Benzene10Light petroleum10Benzene10Chloroform55Acetone10Chloroform55Acetone10Chloroform55Acetone10Chloroform55Acetone10Chloroform55Acetone10Chloroform55Acetone10	n-Hexane10Light petroleum10Benzene10Chloroform40 $+$ Acetone10Acetonitrile10Acetic acid10 n -Hexane10Light petroleum10Benzene10Chloroform20 $+$ Acetone10Acetone10Acetonitrile10Acetonitrile10Acetone10Acetone10Acetone10 $+$ $ n$ -Propanol5 n -Hexane10Light petroleum10Benzene10 n -Propanol5 n -Hexane10Light petroleum10Benzene10 n -Hexane10Light petroleum10Benzene10 n -Hexane10Light petroleum10Benzene10 $+$ Chloroform55 $-$ Acetone10 n -Hexane10Light petroleum10Benzene10 $+$ Chloroform55Acetone10 $+$ Chloroform55Acetone10	n-Hexane 10 Light petroleum 10 Benzene 10 Chloroform 40 + Acetone 10 Acetone 10 Acetonitrile 10 Acetonitrile 10 Acetone 10 Acetone 10 Acetone 10 Benzene 10 Benzene 10 Chloroform 20 Acetonitrile 10 Acetone 10 Hexane 10 Light petroleum 10 Benzene 10 n -Propanol 5 n -Hexane 10 Light petroleum 10 Benzene 10 Light petroleum 10 Benzene 10 Benzene

Fig. 2. Chromatoplates with aflatoxin B_1 , M_1 and milk extract developed in different developing solvents. $B = Aflatoxin B_1$; $M = aflatoxin M_1$; E = milk extract; EB = milk extract with aflatoxin B_1 internal standard; EM = milk extract with aflatoxin M_1 internal standard; 1-5 = number of solvent in Table II.

seven separate aflatoxin M_1 from interfering substances only slightly (diethyl ether, ethyl acetate, water, dioxane, acetone, ethanol and acetonitrile) and one (acetic acid) significantly well. Four solvents (diethyl ether, ethyl acetate, acetic acid and water) developed the interfering substances and four (dioxan, acetone, ethanol and acetonitrile) were good developers for aflatoxin M_1 . On the basis of polarity, the solvents might be divided into two groups: (a) weakly polar (diethyl ether, ethyl acetate and acetonic acid) and (b) intermediate polar (acetone, ethanol and acetonitrile). Their dielectric constants are 4.3, 6.0 and 6.1 (a) and 20.7, 24.3 and 37.5 (b), respectively.

The HEBCA² solvent mixture was used as a base for the experiments because it had been established for the separation of aflatoxins in food extracts. In this mixture, hexane (H) petroleum ether (E) and benzene (B) were used for the separation of lipids, and chloroform (C) with acetone (A) for the development and resolution of aflatoxins.

In the milk extracts, some interfering substances had the same R_F value and blue colour as aflatoxin M_1 when the HEBCA mixture was used for the development of TLC plates. Also, aflatoxin M_1 was too close to the start line. Therefore, two additional solvents, acetic acid and acetonitrile, were used to improve the separation of aflatoxin M_1 from the other substances. The new developing solvent mixture HEBCAA_cA_a (No. 2 in Table II) had the following composition: hexane-lightpetroleum (b.p. 60-80°)-benzene-chloroform-acetone-acetonitrile-acetic acid (1:1: 1:2:1:1:3). The mixture was estimated as the best because it changed the colour of interfering substances from blue to pale green as well as improving the resolution and separation of aflatoxin M_1 significantly.

ACKNOWLEDGEMENTS

We would like to express our great appreciation to Dr. P. L. Schuller from Rijks Instituut voor de Volksgezondheid, Bilthoven, The Netherlands, as well as to Dr. R. D. Stubblefield and Dr. G. M. Shannon, Northern Regional Research Laboratory, Peoria, Ill. 61604, U.S.A., for supplying the aflatoxin standards. We would also like to thank Mrs. K. Kaczyńska and Miss B. Kierziejonek for their skilful technical assistance, and Mrs. J. Gołab for the excellent preparation of photographs.

REFERENCES

- 1 W. A. Pons, Jr., A. F. Cucullu and L. S. Lee, J. Ass. Offic. Anal. Chem., 56 (1973) 1431.
- 2 E. L. Strzelecki, Pure Appl. Chem., 35 (1973) 297.
- 3 R. D. Stubblefield, O. L. Shotwell and G. M. Shannon, J. Amer. Oil Chem. Soc., 55 (1972) 762.
- 4 W. Mücke and F. Kiermeier, Z. Lebensm.-Unters.-Forsch., 151 (1973) 387.
- 5 M. E. Stack, A. E. Pohland, J. G. Dantzman and S. Nesheim, J. Ass. Offic. Anal. Chem., 55 (1972) 313.
- 6 Official Methods of Analysis, 12th Ed., Ass. Offic. Anal. Chem., Washington D.C., 1975, p. 475.
- 7 R. D. Stubblefield and G. M. Shannon, J. Ass. Offic. Anal. Chem., 57 (1974) 852.
- 8 R. D. Stubblefield and G. M. Shannon, J. Ass. Offic. Anal. Chem., 57 (1974) 848.
- 9 Bulletin BR 153-B, Brinkmann, Westbury, N.Y., 1967.